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I. INTRODUCTION 

The purpose of this research has been to investigate the 

kinetics of the acid hydrolysis and isotopic exchange of 

chloride ion with the chloride ligands of trans-dichloro-

diammineplatinum(II). This work was a continuation of the. 

studies of the chloroammineplatinum(II) series previously be­

gun in this laboratory (1, 2, 3, 4, 5, 6). It was hoped that 

these studies would clarify the mechanism of substitution re­

actions involving square planar platinum(II) complexes. 

Platinum(II) complexes normally exist in a square planar 

configuration rather than in the familiar tetrahedral arrange­

ment. This structure permits the investigation of cis- and 

trans-effects on the kinetic behavior of various isomers. The 

results of this work with the trans- F Pt(NHg)oClol complex are 

contrasted with the behavior of the cis-1"Pt (NHo ) nCl] 1 isomer 

as well as the other chloroammineplatinum(II) complexes in 

section V. 

The trans-dichlorodiammineplatinum(II) complex was first 

prepared by Reiset (7) in 1840 and is sometimes referred to as 

"Reiset's Salt." Five years later the cis-dichlorodiammine-

platinum(II) complex was synthesized by Peyrone (8). About 

fifty years passed, however before Werner (9) was able to 

correctly ascertain that these two compounds were the cis and 

trans isomers' of a square planar configuration about the 

central metal atom. His postulation was based entirely on 



www.manaraa.com

2 

chemical evidence and other workers, Reihlen et al. (10), 

refuted this conclusion as late as 1926, claiming that the 

trans-isomer was really a dimeric form of the cis compound. 

Their conclusion was based on molecular weight determinations 

using liquid ammonia as a solvent. Werner's postulation, how­

ever, was ultimately proven to be correct by structural 

studies (11). 

Among the early workers studying platinum(II) compounds 

was Jorgenson (12). He investigated substitution reactions of 

[Pt (NH3) 4]"^ and [PtCl^]" and observed the formation of dif­

ferent isomers of the general formula [Pt(NH3)2CI2]. He found 

the properties of these isomers to be similar to the products 

obtained earlier by Reiset (7) and Peyrone (8). 

A year after Werner's postulation, a test for distin­

guishing the cis and trans isomers was discovered by Kurnakow 

(13). He noted that cis-[Pt(NHg)gClg] reacted with thiourea 

(tu) to yield [Pt(tu)4]C12, whereas under the same conditions, 

the trans isomer gave [Pt(tu)2C12]. 

The behavior of aqueous solutions of chloroammineplati-

num(II) complexes was first studied by Werner and Miolati (14) 

who observed conductivity evidence of a reaction occurring.. 

Later, in a more extensive study, Drew et al. (15) studied the 

extent of reaction using conductivity measurements and found 

that both cis- and trans-F Pt(NHg)oClol attained an appreciable 

conductivity after several hours in solution. 
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Jensen (16) interpreted this behavior in terms of hydrolysis 

reactions of the type: 

[Pt(NH3)2Cl2] + H20 [Pt(NH3) 2C1(H20) ]+ + Cl~ (1.1) 

[Pt(NH3) 2C1(H20) ] + + H20 [Pt(NHs) 2(H20) 2]++ + CI" (1.2) 

Later, King (17, 18) investigated compounds of the type 

[Pt(NH3)2X2] and [Pt (NH3) 3X]X. This work showed that com­

pounds in which X was CI-, Br™" or N02~ behaved as non-

electrolytes in the diammine case and as salts of univalent 

cations in the triammine case. When X was N03~, SO^™ or 

picrate the compounds hydrol1rzed either completely or sub­

stantially into the aquo di- trtammines. 

The aquation rates of cis* and brans-dithiosulfato-

platinate (II) were measured by % in (19) using conductivity. 

He found the cis isomer hydrolyse', much more readily than the 

trans form of the salt. 

The effects of ultraviolet radiation on the stability of 

aqueous solutions of cis-[Pt(NH3)2C12] was studied by 

Babaevo and Mosyagina (20). They found that under intense 

radiation a black precipitate containing polymerized Pt(OH)6= 

groups was formed. 

Grantham et al. (2) observed that [PtCl^,]" undergoes an 

acid hydrolysis and that the observed exchange of chloride 

ion with complexed chloride could be explained by this aqua­

tion reaction plus an additional first order reaction with the 

monoaquo complex. The suggested possibility of a second 
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hydrolysis forming the diaquo species was later investigated 

quantitatively by Sanders and Martin (5). An extensive study 

of the acid hydrolysis of K[Pt(NH3)CI3] was carried out by 

Elleman et al. (3) in which it was demonstrated that a second 

aquation following the initial hydrolysis provided pathways 

to explain all of the observed exchange. The non-equivalent 

chlorides in the complex were observed to undergo separate 

hydrolyses. The hydrolysis rates and equilibrium of cis-

[Pt(NH3)2CI2] were studied by Reishus and Martin (6) . Again 

the observed exchange could be explained by a two step acid 

hydrolysis system. The hydrolysis of [Pt (NH3) 3d]"1" has re­

cently been studied by Aprile and Martin^ who found that a 

second order direct chloride exchange term was necessary in 

addition to the hydrolysis process to completely characterize 

the observed exchange. Gririberg et al. (21, 22) also studied 

the hydrolysis kinetics of KfPtfNË^) CI3], ^[PtCl^], 

[Pt(NH3) 3C1]C1, cis- and trans-F Pt (NIL,) 2C121 • 

Leden and Chatt (23) reported a very rapid aquation for 

the [Pt (C2H4) CI3]"" complex, the equilibrium being attained in 

two minutes. 

Complexes have been classified by Taube (24) as labile 

or inert, based on their substitution and exchange behavior. 

Taube proposed that if the central metal atom has unutilized 

^Aprile, F. and Martin, D. S., Jr., Ames, Iowa. Exchange 
and hydrolysis data. Private communication. 1961. 
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inner orbitale, the ligands will usually be labile; whereas if 

all sub-shells are filled, the complex will exhibit inert be­

havior. He explained these observations in terms of an ex­

change transition state which was stabilized by the donation 

of an electron pair from the entering ligand to an empty metal 

orbital. Platinum(II), then, would be classified as an inert 

complex according to Taube's definition. Indeed the exchange 

rates of the chloroammineplatinum(II) series have been slow 

enough to conveniently measure, the trans-[Pt(NH?)9CI9I com­

plex having the fastest rate. 

Banerjea et al. (25) studied the hydrolysis and substitu­

tion reactions of some chloroammineplatinum(II) complexes with 

a variety of nucleophilic reagents. They observed no acid 

hydrolysis for trans-fPt(NH3)oCl2 ̂ although the complex did 

undergo a measurable chloride exchange. The reactions studied 

fell into two categories: (1) those that were first order in 

complex but zero order in reactant and all of nearly the same 

rate; (2) those that were first order in both the complex and 

the reactant with faster rates than those of the first cate­

gory. In general the reactants of category 1 were low in the 

trans-directing series whereas reactants of category 2 had 

high trans-directing properties. They proposed a "dissocia­

tion" mechanism for the substitution reactions of square planar 

complexes which was later discussed in more generalized form 

by Basolo and Pearson (26, pp. 188-189). 
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The well known trans-effect will not be discussed in de­

tail here as the subject has been reviewed by others (27). In 

essence, the trans-effect, originally designated by Chernyaev 

(28), refers to the observation that substitution of ligands 

into the inner coordination sphere of Pt(II) complexes was not 

statistical in nature, but rather was governed by a directional 

effect. Certain ligands present in the square planar con­

figuration induced substitution into the position trans to the 

ligand rather than into the cis position. The use of this 

theory in preparing various isomeric Pt(II) complexes was dis­

cussed by Quagliano and Schubert (29). Several theories have 

been proposed to explain this effect, however two proposals 

seem to satisfy the largest number of experimental observa­

tions. For ligands unable to form it-bonds with the metal 

atom, Grinberg (30) suggested that induced dipoles, directed 

away from the ligand trans to the labilizing ligand, weakened 

the bond to the trans-ligand rather than the two cis-liqands. 

The magnitude of this weakening depended on the polariz-

ability of the electron cloud of the labilizing ligand. For 

ligands which may form u—bonds with the metal atom by utiliz­

ing the d electrons of Pt(II) and vacant p or d orbitals on 

the ligands, the theory of Chatt et al. (31) and Orgél (32) 

seems to suffice well. They proposed that the pzr - drr or the 

dir - dir bond reduces the electron density near the ligand 

trans to the labilizing ligand, thereby lowering the energy 
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of the transition state for an Sn 2 attack by another poten­

tial ligand at this position. These theories substantially 

predict the following observed order of decreasing trans-

effect: CN~ ~ C2H4 ~ CO ~ NO ~ SC(NH2) ~ R2S ~ R3P ~ NO2~ ~ 

I" ~ CNS" > Br" > CI"" > pyridine > NH3 > OH" > H20. 

Substitution reactions in which OH", NH3 and pyridine 

replaced the chlorides in K2[PtCl4], K[Pt(NHg)CI3], 

[Pt(NH3)3C1]C1 and K2[PtBr4] have been studied by Grinberg 

(33). He found first order kinetics for alkaline hydrolysis 

in each case and second order reactions for the NH3 substitu­

tion. Accordingly, an aquation step followed by neutraliza­

tion of the acidic proton on the water ligand was proposed as 

the mechanism.of alkaline hydrolysis. Grinberg also dis­

cussed the trans-effect and noted that the order of trans 

directing ligands changes, depending on the type and valence 

state of the central metal atom and the temperature. He also 

cited evidence for a çis-effect: the rate of NH3 substitution 

of [Pt(NH3)CI3]-, in which the NH3 substitutes in the cis 

position, was greater than the rate for [PtCl4]"; also bromide 

exchanged more rapidly with [Pt (N^ÎB^]- than with [PtBr4]~. 

This cis-effect was stronger in Br-Pt-Br systems than in 

Cl-Pt-Cl and quite weak in NH3-Pt-Cl compounds. 

Basolo et al. (34) studied the relative reactivities of 

replaceable ligands in planar Pt(II) complexes of the type 

[Pt(dien)x]+, where dien = diethylenetriamine. They found 
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the following order of replaceability: N0
3~ ) CI"* > Br" > 

I~ > SCN~ y N02~. This paralleled the trans-effect series and 

inferred that strongly trans directing ligands are more diffi­

cult to dislodge. 

Chatt and co-workers (35) have recently reported an 

extraordinary series of compounds of the type trans-

[Pt(R3M)2XH], where M = P or As; X = N03> Cl, Br, ï, N02, SCN, 

CN and R = alkyl or aryl radical. The hydride is directly 

bound to platinum and it was found to have a large trans-

directing effect. 

Rather complete proposals on the possible mechanisms of 

substitution of square planar complexes have been made by 

Basolo and Pearson (26, pp. 188-189). If one of the ligands 

(L) is capable of forming pir - djr or dir - djr bonds with the 

platinum atom, the authors propose a trigonal bipyramid 

transition state for reactions of the type: 

trans-[PtA2%X] + Y > trans - T PtAoLY 1 + X (1.3) 

The transition state may be represented as follows: 

J/ 
! xx 

A 
Since the dX2 orbital electrons of Pt(II) have a maximum con­

centration along the Pt-X and Pt-Y directions, the ir-bond 

formed between Pt and L reduces this electron density and 

hence lowers the transition state energy. By the same 
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reasoning proposed by Chatt and orgel in explaining the trans-

effect, the greater the ir-bonding tendency of L, the greater 

its trans-effect on the ligand X. 

The mechanism for complexes containing ̂ --bonding ligands 

involving this intermediate proposed by Basolo and Pearson is 

given below. 

s y -4 

's . s A 

)[SL,U tF'si 

% A x 

l 4 - y  % 
A 5 

V"* 

(1.4) 

S - solvent 3 

weak bond 

Path II includes the possibility that X may be lost 

initially in forming the trigonal bipyramid intermediate. Ac­

cording to this scheme, the rate of reaction will generally be 

first order in Y, however, in some cases the solvent (S) may 

take the place of Y as a reagent and the overall rate may be 
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independent of the concentration of the reagent which 

eventually replaces the solvent. 

Another "dissociation" mechanism in which a five-coordi-

nate intermediate forms from the dissociation of a ligand from 

the tetragonal structure about the Pt(II) ion has also been 

proposed by Basolo and Pearson: 

i: " - * . 
5 

I i 
S 

' j  4x| | -X 51»" , X 1l" X  Si  

_  l m / A  

^ j 

a v 

Y 

xi ^ 

Il F 

s 

~*rt 

5 
Y 

K U  l W A  

"'i'v "T 
5 

(1.5) 

The five-coordinate intermediates above were designated as 

having a tetragonal pyramid structure similar to the inter­

mediate proposed for substitutions in the regular octahedron 



www.manaraa.com

11 

of cobalt(III). This mechanism is consistent with the ob­

servation that substitution reactions of Pt(II) complexes 

follow either first or second order kinetics. If the reaction 

proceeds by Path I, it should show a zero order dependence on 

the concentration of Y, whereas if it involves Path II there 

will be a first order dependence on the concentration of Y. 

Which of the two paths predominates will depend upon the 

complex, the nature of Y and of the solvent. If both Paths 

I and II are involved, the rate will be made up of two terms, 

one zero order in Y and one first order in Y. Because of the 

dissociation step, the reaction rates of either Path I or II 

should exhibit a strong dependence on the ionic strength of 

the solution. 
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II. EXPERIMENTAL 

A. Materials 

1. Platinum 

Platinum was obtained from either the Fisher Scientific 

Company in the form of Kg[PtClg] or from the Mallinckrodt 

Chemical Works, Bram Chemical Company and Allied Chemical 

Company in the form of Hg[PtClg]"n HgO. 

To avoid the catalytic effects on exchange reactions due 

to [lrClg]= (1), all platinum was treated as follows. A 

slurry of slightly soluble Kg[PtClg] was made basic with NaOH 
_ O 

and the [PtClg]= was reduced to Pt by a slight excess of 

hydrazine. The platinum metal was then, washed with water, 

hot concentrated HC1, more water to remove the Cl~, hot 

concentrated HNO3 and finally water to yield the Pt free of 

the less noble metals. The platinum was then converted to 

Hg[PtClg] by addition of hot aqua regia, according to the 

method described by Vezes (36). Heating to dryness several 

times with concentrated HBr converted the Hg[PtClg] to 

Hg[PtBrg]. Addition of excess KBr yielded the moderately 

soluble Kg[PtBr5] and subsequent recrystallization of this 

violet salt effectively eliminated the iridium contamination. 

The iridium-free Kg[PtBrg] was then reduced to Pt° by 

hydrazine in basic solution. 

All solutions containing platinum were saved after 
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experimentation was complete and this platinum was periodical­

ly reclaimed by the procedure outlined above. 

2. Potassium tetrachloroplatinate(II) 

The preparation of Kg[PtCl4] was essentially identical to 

that previously described by Vezes (36). Hg[PtClg] was pre­

pared by treatment of platinum metal with hot aqua regia 

and excess KC1 was added to convert it to insoluble Kg[PtClç]. 

This compound was then refluxed for one-half hour with 

stoichiometric amounts of KgCg04 and a small amount of Pt° to 

form Kg[PtCl4]. 

Kg [PtClg] + KgCg04 )• Kg [PtCl4] + 2C0g + 2KC1 (II.1) 

Grinberg's investigation (37) indicated that the mechan­

ism of the reduction involved an intermediate of platinum 

metal and that trace amounts of Pt° accelerated the reaction. 

The reddish crystals of Kg [PtCLj.] were recrystallized 

from hot water by cooling and evaporation to obtain maximum 

yields of the very soluble salt. 

3. Tetrammineplatinum(II) chloride 

The method of preparation of [Pt(NH3)4]Clg was a modifi­

cation of that described by Reiset (7) and by Gildengershel 

(38). A large excess of NH3 was added to solutions of 

Kg[PtCl4] and refluxed until complete conversion to 

[Pt(NH3)4]Clg was obtained as indicated by complete re-dis-
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solution of the initially formed green precipitate 

([PtCMHg)4][PtCl4]) . The compound was then crystallized by 

reducing the solution volume to 50 ml. and adding 500 ml. of 

a 45% acetone, 45% ether, 10% alcohol solution. The white 

crystals were then recrystallized from hot water and stored 

in tightly stoppered darkened containers in an ammonia 

desiccator to minimize decomposition. 

4. Trans-dichlorodiammineplatinum(II) 

One of the methods for preparing trans-fPtfNH-^) 9CI9] 

outlined by Drew et al. (15) was used in this work. Quanti­

ties of solid [Pt(NH3)4]Cl2 were heated to 250° C. for one-

half hour in a shallow container. It was necessary to control 

the temperature fairly accurately (+ 5° C.) because of low 

reaction rates below 250° C. and considerable decomposition 

above 250° C. A "Wood's metal" bath was used with a Meeker 

burner heat source to achieve reliable temperature control. 

The trans-FPt(NHi)9CI9I was then extracted from the residue 

with hot 0.5 N HCl. After filtering the hot solution and 

crystallizing the trans-salt, the compound was recrystallized 

twice more from hot 0.5 N HCl and then twice from hot water, 

filtered, washed with water, alcohol and ether, and dried in 

air. This multi-recrystallization process with the last two 

recrystallizations in water was required to attain acceptable 

purity as indicated by platinum and chloride analyses and by 
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u.v. absorption spectra. The crystals could be stored in­

definitely in a desiccator with no decomposition. This 

process gave a 60% yield of trans-TPt(NHj) ,Cl^ . 

The other method proposed by Drew et al. (15) involved 

reacting solid [Pt(NHg)^Clg with hot concentrated HCl. 

Banerjea et al. (25) found, however, that it was very dif­

ficult to obtain pure trans - TPt (NH-%) oClol in good yield from 

the product mixture. Consequently, this method was not used 

in this work. 

5. Additional reagents 

Reagents such as NagSO^, used to adjust the ionic 

strength; NaOH, used in potentiometric titrations; KCl, 

NaNOg, K2C2°4* ^3 e^c- required a definite knowledge of 

purity and were purchased as reagent grade chemicals from the 

Baker Chemical Company, Fisher Scientific Company or Allied 

Chemical Company. When carbonate free NaOH was desired, the 

method described by Allen and Low (39) was used to purify 

the NaOH. 

6. Chlorine-36 

Chlorine-36 was obtained in the form of approximately 

2 N HCl from the Isotopes Division, United States Atomic 

Energy Commission, Oak Ridge, Tennessee. This isotope decays 

by emission of a 0.71 Mev beta particle with a half-life of 
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3.5 x 105 years (40) . 

7. Water 

All experiments were done using tap distilled water which 

was redistilled from alkaline permanganate solutions. Water 

used in conductivity studies was ion-exchange purified tap 

water which was distilled from alkaline permanganate solutions. 

B. Equipment 

1. Ion exchange columns and resin 

Two sizes of ion-exchange columns were used, depending 

on the aliquot volume used; 50 cm. long, 11 mm. inside 

diameter and 50 cm. long, 23 mm. inside diameter. The column 

sizes were determined by investigating the resin capacity for 

chloride using blank solutions of KC1 and NagSO^. The columns 

were fitted with coarse sintered glass filters for rapid flow 

and packed with 20 mesh resin. 

The anion resin used was strongly basic Amberlite IRA-400 

purchased from the Rohm and Haas Company. The resin was 

shipped in the chloride form and was converted to the nitrate 

form using concentrated NaNOg. 

2. Geiger-Muller counter 

A Tracerlab Inc. TCG-1 end window, self-quenching Geiger-

Muller counter tube was used to measure activities in all of 
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the samples. The mica window thickness was 2.5 mg./cm.2 and 

the tube deadtime was found to be 200 microseconds by the 

matched sample technique (41, p. 266). The sample rack was 

mounted 7 mm. below the end window inside a lead housing. 

A Berkeley decimal scalar, model 100, was used to record the 

pulses from the tube. 

3. Filtering equipment 

Exchange rate studies by radioactive tracer techniques 

require smooth, reproducible samples. This was achieved 

by directly filtering well coagulated slurries of the 

radioactive AgCl samples onto round pieces of fine (Red 

Ribbon) filter paper. A glass chimney of inside diameter 

2.8 cm. was fastened by rubber bands to a round sintered 

glass disk of the same diameter, fused into the top of a 

small funnel. A slight vacuum created by an aspirator was 

used to control the rate of filtration. 

4. Constant temperature bath 

A Sargent constant temperature bath was used for main­

taining all solutions within 0.1° C. of the desired tempera­

ture. The 25° C. bath was cooled by tap water running 

through a cooling coil and a series of intermittant heaters 

balanced the cooling effect. The 35° C. bath required no 

auxiliary cooling other than the atmosphere. The 15° C. bath 
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was cooled by a portable refrigeration coil manufactured by 

the Blue M. Electric Company, Blue Island, Illinois. Precise 

temperatures were maintained by balancing with the inter­

mittant, thermo-regulated heaters. 

5. Additional equipment 

A Machlett Auto-Burette, self-filling burette, cali­

brated to hundredths of a milliliter, was used in the 

potentiometric titrations of aquated complexes with NaOH. 

A Beckman model "G" pH meter, standardized against a pH 7 

buffer, was used to follow pH changes. In order to allow pH 

determinations outside the shielded cabinet, shielded 

electrodes, model 1190-80 (standard calomel and glass), were 

used. Immediate mixing of the NaOH with the reaction solution 

was achieved with a magnetic stirrer. 

Potentiometric titrations of chloride were made with the 

same pH meter used as a potentiometer. Potential differences 

between a Ag-AgCl electrode and a standard calomel electrode 

were measured as AgNOg was added to the reaction solution. 

The Ag-AgCl electrode was constructed according to the method 

outlined by Bates (42, pp. 204-206). 

Conductivity measurements were made using an Industrial 

Instruments, Inc. conductivity bridge, model RC 16. A Freas 

type conductance cell with freshly platinized electrodes was 

used for all conductivity experiments. 
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A Cary Recording Spectrophotometer, model 12, manu­

factured by Applied Physics Corporation, Pasadena, California, 

was used for characterization of compounds and kinetics 

studies. The experimental solutions were contained in 10 cm., 

glass stoppered silica cells. 

For the analysis of platinum in trans-TPt(NH^)nClg1 

by thermal decomposition, a muffle furnace of 700° C. maxi- , 

mum temperature manufactured by Schaar and Company, Chicago, 

Illinois, was used. An alternate procedure for platinum 

analysis involved electrodeposition of the metal onto a 

platinum electrode using a Sargent-Slomin Electrolytic 

Analyzer. 

C. Procedures 

1. Analysis of trans-dichlorodiammineplatinum(II) 

Characterization of unifoinmity of purity for each 

preparation of trans-[Pt(NH^)gClg] consisted of platinum and 

chloride analyses and the u.v. absorption spectrum taken be­

tween 220 mu and 400 mu. Originally, the platinum analysis 

was done electrolytically by weighing à known amount of 

trans-salt into a solution containing 0.5 N sulfuric acid and 

a drop of nitric acid which acts as a cathodic depolarizer to 

prevent excessive hydrogen evolution. The platinum was then 

deposited on weighed platinum electrodes using currents of 
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0.2 amp. for 2 hours. Subsequently, the chloride analysis 

was done gravimetrically on the same sample by addition of 

excess AgNOg to precipitate AgCl. Precautions were taken to 

avoid errors in this determination by keeping the AgCl in 

darkened areas and the supernatant solution slightly acidic. 

Later, platinum analyses by thermal decomposition proved to be 

somewhat more precise than the electrodeposition procedure. 

Weighed quantities of trans-[Pt(NHg)2CI21 were slowly heated 

to 5000 C. in a muffle furnace, converting the sample quanti­

tatively to platinum black. The chloride analysis was then 

done on a separate sample by reacting a known amount of trans-

compound dissolved in water with excess NH3 to strip the com-

plexed chloride from the compound. Then the solution was 

acidified, excess AgNOg was added and the AgCl precipitate 

was weighed. 

In general, the crystals of trans-salt were considered 

to be of acceptable purity when the observed analysis deviated 

from the calculated values by less than 0.1%. 

Comparison of the u.v. absorption spectra of trans-

[Pt(NH3)2CI2] with that published by Chatt et al. (43) was 

found to be a sensitive criterion of purity. The valley 

absorbance at 252 mu was particularly sensitive to impurities 

and, in general, if the optical density of this valley was 

95% or less of the optical density of the valley at 295 mu, 

acceptable purity was indicated. A typical spectrum of 
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trans-[Pt(NH3^2C12^' showing the changes produced by acid 

hydrolysis appears in Figure 1. 

2. Determination of first acid hydrolysis equilibrium 

Because of low solubility [0.00122 M at 25° C., cf. Drew 

et al. (15) ] and slow rates of dissolution, the concentration 

range studied in this research was very much limited. A 

known amount of trans-compound was dissolved in the desired 

amount of water by shaking the mixture for about 6 hours at 

35° C. The proper amount of NagSO^, was added to yield an 

ionic strength of 0.318 neglecting contributions from the 

hydrolysis products ([Pt(NHg)2C1(HgO)]+ and Cl~ contribute 

less than 0.1% of the total ionic strength at equilibrium). 

The flask was then diluted to the mark and allowed to reach 

equilibrium at the desired temperature for at least 48 hours. 

The flasks were usually covered with black tape to minimize 

photo-induced decomposition, however, exposure to room lights 

in a few instances did not seem to alter the results. Ali-

quots were then titrated with approximately 0.1 N. NaOH using 

the microburette, stirrer and pH meter previously described. 

All NaOH solutions used were standardized with reagent grade 

sulfamic acid using phenolphthalein as an indicator. The 

first aliquot was titrated rather deliberately to ascertain 

the titration curve in general, subsequent titrations being 

carried out rapidly with more points concentrated near the 
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Figure 1. Ultraviolet absorption spectrum of trans-[Pt(NH-)9C19]. 
Spectrum obtained with a solution: 7.59 x 10-4 mT 
trans-[Pt(NH3)2cl2lj 0.010 M. KCl (to suppress hydrolysis) 
in a 10 cm. silica cell. Dotted line shows spectrum of a 
solution with no KCl taken 24 hours after dissolution to 
illustrate spectral changes due to acid hydrolysis 
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endpoint. Aliquots quenched by cooling to 5° C. exhibited 

considerable reversal of the hydrolysis equilibrium as 

significantly lower titres (25%) were obtained. Single point 

titrations were also carried out, in which the pH measured 

after addition of nearly the exact amount of base required to 

reach the endpoint could be used to indicate the amount of 

base-induced aquation occurring during the titration. This 

latter titre was used as the most accurate measure of the 

endpoint and averages of several such titres were used to 

obtain the first acid hydrolysis equilibrium constant by 

means of the equations in section III A. A typical titration 

curve is shown in Figure 2. 

Occasional drift of the pH reading just prior to attain­

ment of the endpoint was observed, especially in the experi­

ments done at low ionic strength. This was probably due to 

a combination of incomplete rinsing of the electrodes be­

tween aliquots, COg absorption and base-induced hydrolysis. 

3. Determination of first hydrolysis rate constant 

In the evaluation of kinetics of reversible reactions by 

potentiometric titration methods one must have fresh solu­

tions and half-times of reaction long enough to obtain several 

points before equilibrium is reached. The rate constant for 

the formation of the acidic trans-FPt(NHg),Cl(HoO)1+ species 

was determined by following the acid titre during the first 
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Figure 2. Potentiometric titration curve used to determine the first 
acid hydrolysis equilibrium constant for t r a n s - [ P t ( N H o ) •  
Initial trans-salt concentration was 7.53 x 10-4 m., 50 ml. 
aliquot, n = 0.318, 25° C. 
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three half-times of reaction. A weighed quantity of trans-

[Pt(MH3)2CI2] was shaken for 10 minutes in an aqueous solution 

of the proper volume, temperature and ionic strength (|i • 0.318 

by addition of Na2S04,X The undissolved crystals were then 

filtered off and aliquots were withdrawn for titration. The 

zero time was taken to be 5 minutes after the slurry was 

started shaking. In each run a 100 ml. aliquot of the solu­

tion was reserved to be analyzed for platinum content by the 

methods described in Section II C. The trans-salt concen­

tration was also checked by using the equilibrium titre and 

the known equilibrium constant» The titrations were carried 

out as rapidly as possible to minimize any base-induced 

hydrolysis. In some of the runs the aliquots were quenched 

by cooling to 5° C., however the rate constant obtained 

differed insignificantly from that obtained in the unquenched 

runs. In general the rate constants could be reproduced to 

within about 15%, however, if the crystals had dissolved any 

more slowly or if the hydrolysis rate had been much faster, 

this method could not have been used. By plotting G(x), which 

is the function of the observed titres and equilibrium 

constant given by Equation III.9, versus time, the rate con­

stants were determined from the half-time. A typical set of 

titration curves is given in Figure 3. 

4. Isotopic exchange experiments 

The purpose of the exchange experiments was to follow the 

rate of introduction of chlorine-36 into the complex species; 
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Figure 3. Titration curves used to determine the acid hydrolysis rate 
constant for trans-fPt(NHQ,Cl^. Initial trans-salt con­

centration was 2.68 x 10"^ M., 50 ml. aliquots, 15° C., 
\l = 0.318 
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jL.e. trans-[PtÇNH-j) ?C1?] and trans-fPt(NH^) ?C1(H^>0) ]+. Such 

experiments yield information concerning chloride lability 

and extent of a second acid hydrolysis. 

All of the exchange experiments in this work were per­

formed with "aged" solutions. In these solutions the trans-

[Pt(NH3)2CI2] was allowed to reach equilibrium with its hy­

drolysis species before the exchange was initiated by the 

addition of chlorine-36. All of the solutions were kept at a 

constant ionic strength of 0.318 by simultaneous adjustment 

of KC1 and NagSO^ concentrations. The experiments were 

carried out at different chloride and trans-salt concentra­

tions. In each experiment the rate of introduction of 

chlorine-36 into both the neutral and positively charged com­

plex species (jL.e. trans-[Pt (NH3) 0CI0I and trans -

[Pt(NHg)2C1(H20)]+) was obtained. It was not feasible to 

measure the active chloride in the separate species. 

The exchange experiments required a clean separation of 

the platinum complexes from the ionic chloride, and then the 

measurement of the specific activity of the complexed 

chloride. The obvious method of adding AgNOg and filtering 

off the ionic chloride as AgCl failed completely. Apparently, 

a rapid exchange, induced by the precipitation process, was 

occurring. Also, inefficient separations of the Ag CI pre­

cipitate from the filtrate and stripping chloride from the 

complex species by addition of excess AgNOg introduced 
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difficulties. Because of the success found by Reishus (6) 

using an ion exchange separation technique, this method was 

tried and found to serve well in the characterization of the 

exchange reactions. 

The exchange experiments employed Amberlite IRA-400 

anion resin in the NOg" cycle. Weighed quantities of trans-

[Pt(NH3)2C12] were dissolved by shaking at 35° C. for several 

hours in water of the proper volume containing the desired 

amount of KC1 and Na2S04. Any possible errors due to the 

presence of KC1 and Na2S04 during the dissolution (i,.£. 

chloride substitution of NHg etc.) were not detected by other 

exchange experiments in which the KC1 and Na2S04 were added 

after completely dissolving the trans-salt in water. The 

flask was then wrapped with black tape and allowed to 

equilibrate at the desired temperature for at least 3 days but 

no longer than a week. Then the exchange was initiated by 

O ÇL 
addition of 5 to 50 microliters of approximately 2 N. HC1 , 

this moment being taken as the zero time of exchange. The 

•3 C 
amount of 2 N. HC1 added was in all cases negligible com­

pared to the chloride already present in the system. Ali­

quots, appropriately sized to yield the desired amount of 

final AgCl precipitate, were then pipetted into the anion 

exchange column at various times covering from 3 minutes to 

three half-times of exchange. The exchange resin very ef­

fectively removed all of the ionic chloride, quenching the 
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exchange reaction, and permitted the trans-compound and any 

aguo species to pass through the bed. All aliquots were 

eluted from the resin by a 4-fold excess of water. The ef­

fluent solution was then boiled to reduce the volume to 50 

ml. Then the solutions were boiled with excess aqueous NHg 

for 30 minutes to substitute NHg for all chloride ligands, 

forming [Pt(NHg)4]** and ionic chloride. After acidification 

with H2SO4, excess AgNOg was added to precipitate the 

chloride. The precipitate was coagulated by heating for 20 

minutes and carefully filtered on weighed filter papers as 

described in section II B. After drying in the open air and 

weighing, the AgCl samples were mounted on cardboard squares 

using wide Scotch tape, counted, and the specific activity 

(cts./min. mg. Cl) was determined for each sample. Several 

blank filter papers were weighed with the samples to determine 

the correction for weight changes due to humidity differences. 

The fact that the specific activities of several exchanging 

species are identically the same at exchange equilibrium and 

are equal to the original ratio of radioactive chloride to 

total chloride in the system permitted sampling the infinity 

aliquots, i.e. equilibrium samples, at any time after exchange 

was initiated. These aliquots were treated directly with NH3 

and the total chloride was precipitated and treated in like 

manner to the other aliquots. All aliquot sizes were cal­

culated to yield at least 10 mg. of final AgCl precipitate so 
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as to minimize self-absorption errors by working on the plateau 

of the self-absorption curve (2). Generally, about 90% of the 

theoretically calculated complexed chloride was obtained in 

the final precipitates. The fraction of exchange, F(F -

st/sco where S% and S^ denote specific activities at time t 

and at equilibrium), for each sample was calculated and plots 

of log (1 - F) versus time were made to obtain the half-time 

of exchange. A typical exchange reaction plot appears in 

Figure 4. The exchange resin was regenerated after each 

sample by running concentrated NaNOg through the column. 

5. Conductivity experiments 

All conductivity experiments were done using electrodes 

coated with platinum black and 1000 c.p.s. currents to 

minimize polarization effects. The cell constant was deter­

mined by measuring the resistance of a standard 0.0200 N KC1 

solution. The electrodes were thoroughly rinsed with 

conductivity water of at least 1.5 x 10"^ ohm-1- cm.-1 

specific conductance between each experimental sample. The 

Freas type conductance cell was thermostated at 25° C. for 

all experiments. Some of the solutions were prepared by 

completely dissolving weighed quantities of trans-fPt(NHj) ̂.Cl^l 

in water. Others were prepared by "shaking a slurry of trans-

salt crystals in water for a few minutes, filtering off the un­

dissolved crystals and later analyzing for platinum con-
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Figure 4. Typical exchange plot of log(l-F) versus time for the iso-
topic chloride exchange of trans-[Pt(NH3)2CI2]. Trans-salt 

concentration = 7.59 x 10-4 m., chloride concentration = 
3.0 x 10-3 M., li, = 0.318, 25° C. 



www.manaraa.com

I-F 

1,0 
.9 
.8 
.7 

.6 

.5 

.4 

.3 

.2 

trans-[Pt( NHV,CI], 
a = 7.59 XI 0"4 

b= 3.0X10 -3 

/i=.3I8 , 25° 

Ti = 160 
2 

MIN. 

50 100 150 200 
TIME (MIN.) 

250 

w 
U1 

300 



www.manaraa.com

36 

centration Toy the methods described in Chapter II-C. Also, 

conductivity measurements were made on effluent solutions from 

a column containing two types of ion exchange resins, one in 

the H+ cycle and the other in the OH" cycle. Conductivity 

readings were taken until a steady state had attained for 

each of the experiments and the equivalent conductances were 

calculated from the measured resistance (R), known concen­

tration (C) and cell constant (k) using the classical ex­

pression relating these parameters: 

= 1000k/CR (II. 2) 
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III. MATHEMATICAL TREATMENT OF DATA 

A. First Acid Hydrolysis Equilibrium 

Jensen (16) has indicated that trans-[Pt(NHg)2CI2] under­

goes acid hydrolysis when dissolved in water. In general, 

this hydrolysis may be described by the following equations: 

Ri , 
trans-[Pt (NH3) 2C12]+ H20 ?=i [Pt(NHg) 2C1 (H20) ] + Cl" (III.l) 

R_1 
(a-x-y) (x) (b+x+2y) 

r
2 ++ 

[Pt(NH3) 2C1(H20) ]++H20 [Pt(NHg) 2(H20) 2] + Cl" (III.2) 
-2  

(x) (y) (b+x+2y) 

where a = initial concn. of t-[Pt(NHg)2C12], moles/1. 

x = concn. of [Pt(NH3)2C1(H2O)]+, moles/1., at time t 

y = concn. of [Pt(NHg)2(H2O)2]++> moles/1., at time t 

a-x-y = concn. of t-[Pt(NHg)2C12], moles/1., at time t 

b = initial concn. of ionic chloride, moles/1. 

b+x+2y = concn. of ionic chloride, moles/1., at time t 

R^ = rate of first acid hydrolysis, moles/1. sec. 

R_1 - rate of reverse first acid hydrolysis, moles/1, 

sec. 

R2 = rate of second acid hydrolysis, moles/1. sec. 

R_2 = rate of reverse second acid hydrolysis, moles/1, 

sec. 

If the extent of hydrolysis of a second chloride (Reac­
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tion III.2) were negligible, the equilibrium constant describ­

ing the system would be given by: 

[Pt(NH3) 2C1(H20) ] + [C1-]y+
2 Xqq (b+xœ)y±

2 

kl = : — 

[Pt(NH3)2Cl2]Y0 (a-xœ)Yo 

(III.3) 

where the infinity subscripts refer to the concentrations at 

equilibrium or infinite time, and the y's are the indicated 

activity coefficients. The measured acid titre is repre­

sented by T (equiv. acid/1.). Then x - T and Equation III.3 

becomes: 

Ki = Tœ (b+Too)^ 2 /(a-Tœ)Yo (III.4) 

For solutions of low ionic strength (ji.e. no added salt 

so the ionic strength just equals Xqq or Tqq), yQ may be 

taken to be 1, and the activity coefficient of HCl in a 

solution of KC1 (44, p. 575) with an ionic strength just equal 

to TQQ may be used for y+. For solutions in which Na2S04 is 

added to establish the ionic strength at 0.318 M., the con­

centration quotient, K^, is defined by: 

K1 = KlYo/y±2 = Tœ (b+Too) /(a-Tœ) (HI.5) 

Under these conditions of a constant high ionic strength, 

all activity coefficients are expected to be constant and 

accordingly the concentration ratio, K^, will also be con­

stant with changes in concentration. 
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B. Rate Constant for First Acid Hydrolysis 

In accord with the stoichiometry of Reaction III.l, the 

first hydrolysis reaction is expected to be first order in 

trans-fPtfNH-g) ?Clol while the reverse reaction is first order 

in [Pt(NHg)2C1(H20)]+ and first order in Cl~. If, in addi­

tion, the second hydrolysis is assumed to be negligible, the 

expression for the time rate of change of x in Reaction 

III.l becomes: 

dx/dt = Ri - R_i = ki(a-x)-K_i(x) (b+x) (III.6) 

where k^ - rate constant for hydrolysis, sec.-l 

k_i = rate constant for reverse hydrolysis, l./mole 

sec. 

Since = k1/k_1, Equation III.6 rearranges to: 

dx/[x2 + (b+K^)(x) - K^a] = -k_^dt (III.7) 

which can be integrated with the limits x = 0 when t - 0, x = 

x when t = t and the expression for xœ obtained from 

Equation III.5 (x^ = Tœ ) to yield the solution: 

-k_xt - G(x)/ V^K^^TlbnicjT2" (III.8) 

«here G(x, = In + (b+Kj) 2 ) ]_ ^ ̂ 

[xœ (X-Xoo + ̂ 4K^a + (b+Kj) 2 ) ] 

The measured acid titres may be substituted for the x's. 

According to Equation III.8, plots of G(x) will be linear in 

t. The half-time of hydrolysis, t%, obtained from these 
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plots, is then used in the following expression to calculate 

the rate constant k_^. 

k-l " ln 2/Î Ctag) ( *14K^a + (b+Ki)2 ) 3 

(III.10) 

Finally, k^ can be calculated from the expression: 

kx = k_i % (III.11) 

C. Isotopic Exchange Equations 

1. General treatment of three component exchange systems 

There may be several possible mechanisms whereby radio­

active chloride is introduced into the trans-fPt(NHg)oClgl 

or the [Pt(NH3)2CI(H2O)]+ species. Two of these paths are 

by the acid hydrolyses illustrated in Reactions III.l and 

III.2. Also, a direct exchange might occur in which ionic 

chloride replaces complexed chloride directly. 

Including the possibility of a second acid hydrolysis, 

the chloride exchange scheme at chemical equilibrium may be 

represented by the following reactions; 

R1 + 
trans-[Pt(NH3)2C12]+H20 , ^ [Pt(NH3)2CI(H2O)]+Cl" 

R-l-Rl 
(a-Xoo -yœ ) (xœ) (b+xœ+2yco) 
U' Su v, Sv s, Sg 

(111.12) 

trans-[Pt(NH3)2C12]+C1~* ̂ -4 trans-[Pt(NH3)2C1C1*]+C1~ 
(III.13) 
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[Pt(NH3)2C1(H20)]+ +H20 t 
R2 ^ [Pt(HH3)2(H20)2]+++Cl~ 

R-2=R2 
(xœ) (yœ) (b+xoo+2yoo) 

v, Sy SJ Ss 

(III.14) 

[Pt(NH3)2Cl(H20)]+ +C1"* [Pt(NH3)2Cl*(H20)]+ +C1" 

(Xqq ) (XQQ ) (^"f"xoo +2Yœ ) 
VJ SV S, Sg 

(III.15 

where u = CI36 concn., CI*, atoms/ml. in t-[Pt(NHg)2C12] 

Su = u/2(a—XQQ -yœ), specific activity of the chloride 

in t-[Pt(NH3)2C12] at time t 

s = Cl~* concn., atoms/ml., in ionic chloride 

Ss = s/(b+Xgo +2yco ), specific activity of the ionic 

chloride at time t 

R' • rate of direct chloride exchange process for 

trans-[Pt(NH3)2C12] 

v = CI3® concn., atoms/ml., in [Pt(NHg)2C1(H20)]+ 

Sv = v/XQQ, specific activity of the chloride in 

[Pt(NHg)2C1(H20) ]+ at time t 
+ 

R" = rate of direct chloride exchange for [Pt(NH3) 2C1(H20)J 

moles/1, min. 

Other symbols have been previously defined. In this system, 

the total concentration of chlorine-36 is defined by 

I = u + v + s. 
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The time rate of increase of u is given by 

du/dt = Ri(Ss + Sv - 2SU) + R' (Ss - Su) (III.16) 

If a parameter, y, is defined by 

y  = R'/Ri (III.17) 

and Ss, Sv and Su are put in terms of I, u, v, a, b, Xqq and 

yœ in Equation III.16, the following equation is obtained: 

-i- B + u r d+y) + d+y/2) i + 
R+1 dt (b+x00+2yœ) (a-xœ-yoo) 
- (III.18) 

v r ^ - —-—i = r (1 -f *y)— i j 
(b+xœ +2yco ) xœJ 1 (b+x00+2yœ ) J 

where R+1 = R^ = R_j_, the rate of the first acid hydrolysis 

at chemical equilibrium. 

Similarly, the time rate of increase of v is given by 

dv/dt = Ri(Su - sv) + R"(Sg - Sv) + R2(Sg - Sv) (III.19) 

With the definition of another parameter, by 

p = (R" + R2)/R1 (III. 20) 

and substitution of Su, Sg and Sv in terms of I, u, v, a, b, 

XQQ and yœ in Equation III.19, the following equation is ob­

tained: 

dv , r-U—±-ÈL _i_ - 3 _i + 

R+1 
dt + v f (xqo ) + (b + xœ + 2yœ ) 1 

(III.21) 

U ^ (b+x^Q +2y00) " 2(a - xœ-yœ) ^(b+xo^+2y0o) 3l 

Equations III.18 and III.21 are linear first order dif­

ferential equations and their solutions for the condition that 
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u = v = 0 a t t = 0  a r e  o f  t h e  f o r m  
-ajt -a„t 

1 - u/uqo = 1 - Su/SU(X)=Aie + A2e 

~ait -a?t 
1 — V/Vqq = 1 — Sv/svoo eBje + B2e 

where the infinity subscripts refer to infinite time or 

equilibrium. These two solutions may be combined to yield 

the following expression: 

1 - (u + v)/(uœ + vœ) = C1e"ait + C2e"a2t (III.22) 

The total fraction of exchange for all complexed chloride is 

given by Fu+V = (u + v)/(uœ + vœ) . 

The parameters C%, C2, (%i and a2 are determined by a, b, 

k|, kj, p and y. Expressions for evaluating the above 

parameters (C's and a's) are obtained by substitution of the 

above solutions into Equations III.18 and III.21. Therefore, 

the time of half-exchange for all complexed chloride (i.e., 

time for (u + v) /(uqq + Vqq) = h) can be calculated from 

Equation III.22 for a given set of concentration conditions 

from the values of C%, C2, ai and a2. This calculation re­

quires that both (3 arid -y be known. In general, the calcula­

tion involves trial and error adjustment of $ and y until the 

calculated time of half-exchange matches the experimental 

value. It is impossible to determine both (3 and y if a single 

fraction of exchange, i.e., Fu+V, is measured. This problem 

can be resolved, however, if the concentration conditions can 

be adjusted so as to make one of these parameters very small. 
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The form of the other parameter \jL.e., the rate laws and 

values of rate constants involved in the R's in the expression 

assumed for the parameter; Equations III.17 and III.20 are 

examples) can then be determined at these concentration con­

ditions. Thus one of these parameters is known at concen­

tration conditions in which both (3 and y must be considered 

and the other parameter can be determined as follows. 

Calculated curves of 1 - Fu+V versus time are prepared for 

various values of the unknown parameter (for example p) and 

a known value of y. A value of P for each experiment is then 

selected for which the calculated time of half-exchange 

matches the experimental values. 

It should be pointed out that if the value of the frac­

tion of exchange in t-[Pt(NHg)2cl2l only, viz. u/uqq, is known 

at some instant of time, this knowledge yields no information 

concerning the value of the fraction of exchange in 

[Pt(NHg)2C1(H20)]+, vis. v/vœ, or the value of Fu+V. This is 

true because there are three exchanging species: trans-

[Pt(NH3) 2C12] , [Pt(NH3) 2CKH2O) ]+ and CI-. Therefore, at any 

particular time the fraction of exchange of the system is not 

uniquely described by Fu, Fv or Fu+V but rather any two of the 

three. 

2. Treatment of two component exchange system 

If the initial concentration of ionic chloride is much 

larger than the concentration quotient, i,.e_., b ̂  K^, then 
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the equilibrium concentration of [Pt(NH3)2Gl(H20)]"^ will be 

much less than the total platinum concentration, i.e., 

a* Consequently, v will be much less than u and it 

follows that dv/dt will be much less than du/dt. If dv/dt in 

Equation III.19 is set equal to zero, there obtains the 

following expression for P: 

P = (Sv - Su)/(Ss - Sv) (III.23) 

If p is replaced by (R" + R2)/Rl* Equation III.23 is solved 

for the product RiSv, this product is substituted into the 

equation for du/dt (Equation III.16) and finally (R" + R2) 

is replaced by PR^, the following expression is obtained: 

(1 + 2p)Ri 
du/dt = [ +,• + R'] (Ss - Su) (III.24) 

The exchange system is now a "two component" one in which ex­

change is taking place between trans-rPt(flH3)nClnl and Cl~ 

only. This system is characterized by Reactions III.12 and 

III.13. The total rate of exchange in this system is A 

designated as R which is given by 

R = (1 + 2p)R1/(l + p) + R' (III.25) 

Since xQ0 and y^ are much smaller than a in this system (see 

the discussion on page 44) they may be omitted in the ex­

pressions for Ss and Su; i.e., Ss = s/b and Su « u/2a. Under 

these conditions, I, the total number of radioactive chloride 

atoms per milliliter, becomes I = u + s since a negligible 

number of Cl~* atoms are in the mono-aquo complex. 
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Substitution for the quantities of Sg and Su in terms of I, 

u, a, and b in Equation III.24 and incorporation of R from 

Equation III.25 yields 

du/dt + R(b + 2a)u/2ab = Rl/b (III.26) 

This expression is easily integrated to yield a single ex­

ponential solution for u. The following expression for R/a 

is readily obtained from this solution. 

R/a - in 2 (2b)/T^ (b + 2a) (III.27) 

where Tjg = the half-time of exchange at high chloride con­

centrations, i..e., in a two component system. 

In accord with the stoichiometry of Reactions III.12, 

III.13, III.14 and III.15 the rates are expected to have the 

following forms: 

Rl = kx(a - xœ - yco ) 

R' = k1 (a - xœ - yœ) (b + xœ + 2yœ) 

*2 * %2(Xœ) 

R" = k" (xœ ) (b + xœ + 2yco ) 

where k^, k', kg and k" are the rate constants for the indi­

cated reactions. 

As the initial concentration of ionic chloride (b) becomes 

high, keeping the initial concentration of trans-salt ("a") 

constant, x^ and yœ will become smaller. In the limit at 

very high chloride concentrations, R2 will go to zero and R" 

will become constant since (xœ) (b + xœ + 2yQO) -
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K^(a - xœ - y0q) at chemical equilibrium. Also, R% will be­

come constant and R' will be proportional to b. 

From the measured half-times of exchange at high chloride 

concentrations, calculations of R/a at various values of b can 

be made using Equation III.27. Thus a plot of R/a versus b 

can be made to determine the dependence of R/a on b. From 

the considerations of the exchange rate behavior at high 

chloride concentrations discussed on page 46, this plot might 

be expected to be a straight line with zero or a finite slope 

depending on the value of k'. By extrapolation of this plot 

to obtain the ordinate value at zero chloride concentration, 

information concerning the magnitudes of k2 and k", or R2 and 

R" can be obtained if the value of k^ is known. If k2 and k" 

are very small, this ordinate value should be just k%. If k2 

and k" are appreciable, the ordinate value will be higher than 

k^. If R2 and R" are small, then Ç> is small and from 

Equation III.24, the expression for the rate of exchange at 

high chloride concentrations becomesr 

R = R-L + R' (III. 28) 
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IV. RESULTS 

A. First Acid Hydrolysis Equilibrium 

The existence of an acid hydrolysis reaction of 

trans-[Pt(NH3)2C12] in aqueous solutions was demonstrated 

by several experimental observations. 

First, the absorption spectrum of the complex changed on 

aging aqueous solutions as shown in Figure 1. The equilibrium 

spectrum reverted back to the initial spectrum on adding ex­

cess chloride. Observations with other chloroammineplatinum (II) 

complexes have revealed that substitution of an HgO group for 

chloride in the coordination sphere causes the transition 

peaks to shift to lower wavelengths in general. Conclusions 

based on ligand field theory (45) indicate that H20 has a 

higher ligand field strength than chloride. The spectral 

changes occurring for trans-[Pt(NH3)2C12^ indicate a shift 

of peaks to lower wavelengths. 

Second, the initial molar conductance of freshly pre­

pared solutions of the trans-salt was found to be about 

7 l./ohm mole cm. However, the conductivity changed quite 

rapidly, reaching an equilibrium value of about 35 l./ohm mole 

cm. after 3 hours at 25° C. Several solutions were run through 

cation and anion exchange columns in the H+ and OH"" cycles 

to completely remove any ionic impurity; however, the ef­

fluent solutions always exhibited the same conductivity 
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behavior. 

Third, the solution pH decreased on aging due to the acid 

dissociation of the aquo complex 

[Pt(NH3) 2C1(H20) ]+ [Pt(NH3) 2C1(0H) ] + H+ (IV.1) 

Fourth, potentiometric titrations of the system with 

standard NaOH indicated the formation of a weak acid, the rate 

of formation of which reached an equilibrium value. A typical 

set of titration curves is shown in Figure 3. 

Also, some potentiometric titrations of chloride using 

a Ag-AgCl electrode, standard AgNQ3 and acidified acetone 

solvent indicated a general increase in chloride concentration 

on aging freshly prepared aqueous solutions of trans-com­

pound. No quantitative data were obtained using this 

technique, however, due to inconsistent blank determinations. 

Because of the results of Banerjea et al. (25), who were 

unable to detect a significant acid hydrolysis for 

trans-TPt(NH3) oClol, great care was taken to insure the purity 

of the compound and the consistency of the above mentioned 

observations. The compound was re-synthesized several times 

and as many as eight successive fractional crystallizations 

were carried out without altering the behavior or the ultra­

violet absorption spectrum. It is believed that Banerjea 

et al. found no change in conductivity because the hydrolysis 

had probably already reached equilibrium during their lengthy 

dissolution period. 
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The NHg ligands could not have been replaced as this 

substitution would have increased the pH as the reaction pro­

ceeded whereas a decrease was observed. 

The results obtained from equilibrium potentiometric 

titrations at 15°, 25° and 35° C. are given in Table 1. The 

equilibrium quotients were calculated from the measured 

titres using Equations III.4 (low ionic strength) and III.5 

(high ionic strength). The titres shown represent averages 

of two to four titrations and the equilibrium quotients were 

averaged over all such sets of titrations. A typical titra­

tion curve with a single point titration is shown in Figure 2. 

If there were an appreciable second acid hydrolysis, 

Equations III.4 and III.5 would not satisfactorily describe 

the equilibrium and one would observe changes in an equi­

librium constant calculated from these equations as the 

initial trans-TPt(NH^)oClp] concentration is changed. As 

can be seen in Table 1, the calculated equilibrium constants 

were substantially unchanged over the approximately 2.5 fold 

concentration range. Therefore, this system appeared to be 

very well characterized by the single equilibrium shown in 

Reaction III.1. A value of 2 x 10"^ M. at 25° C. was set as 

an upper limit for a second hydrolysis equilibrium quotient, 

Kgj from the indicated variations for K^. The estimated un­

certainty in is about 10%. 

The acid, trans-FPt(NHg)oCl(HoO)1+. was indicated from 
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Table 1. Equilibrium quotients for the acid hydrolysis of 
tran£-[Pt(MH3)2C12] 

Free 
Ionic Initial Equilibrium chloride Equilibrium 
strength [Pt(NH3)2Cl2] 

"a 
(M. x 104) 

titre addeda quotient 
"(1" 

(M.) 

[Pt(NH3)2Cl2] 
"a 

(M. x 104) 

••ipii 

(M. x 104) 
"b" ^ 

(M. x 104) 
or KX 

(M. x 104) 

For 15.0° C. 

0.318 5.00 2.40 0.013 2.22 
0.318 5.60 2.51 0.13 2.14 
0.318 5.94 2.61 0.13 2.15 

Average 2.2 

' 
For 25.0° C. 

0 4.08 1.48 0 0.84 
0 8.16 2.23 . 0 0.81 
0 8.44 2.27 0 0.80 

Average 0.82 

0.318 7.82 3.73 0.013 3.42 
0.318 7.53 3.51 0.013 3.07 
0.318 4.33 2.44 0.013 3.16 
0.318 8.26 3.75 0.013 3.13 
0.318 3.73 2.17 0.013 3.03 
0.318 5.86 3.05 0.013 3.31 

Average 3.2 

For 35.0° C. 

0 8.13 2.55 0 1.12 
0 8.29 2.70 0 1.25 
0 8.43 2.55 0 1.09 

Average 1.1 

0.318 4.06 2.53 0.13 4.41 
0.318 8.16 4.17 0.13 4.49 
0.318 8.26 4.14 0.13 . 4.31 
0.318 8.63 4.24 0.13 4.22 

Average 4.4 

The concentration of chloride was obtained from the 
analysis of the Na2SC>4 added to adjust the ionic strength. 
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the titration curves to have a pK of approximately 6. This 

is slightly lower than the pK indicated for cis-

[Pt(NHg)2C1(H20)]+ which was about 6.7 (6). 

From the temperature dependence of K^, shown in Figure 5, 

Ah° for Reaction III.l was found to be approximately 5.5 

kcal./mole. 

B. Rate Constant for First Acid Hydrolysis 

The mathematical treatment of the kinetics of acid 

hydrolysis were discussed in Chapter III. Graphs of G(x) 

versus time, where G(x) is defined in Equation III.9, ob­

tained from the titration of fresh solutions of trans-

[Pt(NH3)2C12] at 25 ° C., zero and 0.318 ionic strength, are 

shown in Figure 6. The straight lines in Figure 6 do not go 

through 1 because of the uncertainty in zero time due to the 

slow dissolution of the crystals of trans-salt. A typical set 

of titration curves illustrating the hydrolysis proceeding to 

equilibrium is shown in Figure 3. From the slopes of the 

graphs in Figure 6, the values of k_^ and k^ were calculated 

by the procedure discussed in Chapter III. The results show­

ing k^ and k_^ are tabulated in Table 2. 

The reactions could be followed satisfactorily for about 

two half-times and rate constants could generally be dupli­

cated to within about 15%. The exchange experiments described 

in the next section probably provided better values for the 
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Figure 5. Temperature f dependence of the acid hydrolysis equilibrium 
quotient, K^, for trans-[Pt(NH3)gClg]• AH° = 5.5 kcal./mole 
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Figure 6. Plots of G(x) versus time for the first acid hydrolysis 
kinetics of trans-FPt(NHg) a^- 25° C., zero and 0.318 

ionic strengths. Initial trans-compound concentrations 

were 5.23 x 10 ~4 M. and 3.25 x 10~4 M. at zero and 0.318 
ionic strengths respectively 
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Table 2. Rate constants for the reversible acid hydrolysis of trans-[Pt(NH3)2Cl2] 

Temp. 
°C. 

Initial 
[Pt(NH3)2Cl2] 

H a II 
4 

M. x 10 

Initial 
ionic 

strength 
"11" 
M. 

Equilibrium 

[Pt(NH3)2C1(H20) 

» m » 
xoo 

+] time" 

min. 

% 
(xl0=) 

-1 
sec. 

k-l 
—1 — l 

sec. M. x 

15° 2.68 0.318 1.56 147 3.2 0.145 

25° 3.00 0.318 1.89 60 8.9 0.28 
25° 5.23 0 1.70 22 10.0 1.2 

35° 9.03 0.318 4.44 13.2 28 0.65 
35° 6.27 0 2.14 8.8 27 2.5 



www.manaraa.com

58 

acid hydrolysis rate constants. One of the sources of error 

in the potentiometric titration experiments was the low titre 

due to very small amounts of [Pt(NHg)2C1(HgO)]+ formed during 

the early stages of hydrolysis. Also, drift in the pH 

readings, base-induced hydrolysis and inaccurate values of 

the total platinum concentration found by analysis introduced 

additional error. 

It is interesting to note that the markedly different 

slopes in Figure 6 for zero ionic strength and 0.318 ionic 

strength correspond to nearly the same value of k^ as is 

indicated in Table 2. Thus all of the ionic strength in­

fluence on is reflected in k_1. The implications of this 

feature on the mechanism of hydrolysis are discussed in 

Chapter V. 

Figure 7 shows the temperature dependence of k^ and k_^ 

graphically. . The enthalpy of activation, AH"^", was cal­

culated to be 19.6 kcal./mole for k% and 13 kcal./mole for 

k_i« The entropy of activation, AS-J-, was, -11 e.u. for k^ 

and -19 e.u. for k_1. 

C. Exchange of Chloride with Trans-dichlorodiammine-

platinum(II) and Trans-chloroaquodiammineplatinum(II) 

The experimental procedures and mathematical treatment of 

the kinetics of exchange reactions were discussed in Chapters 

II and III. In each exchange experiment the total fraction of 
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Figure 7. Temperature dependence of the acid hydrolysis rate constants, 
and k_x, for trans-TPttNEh) 9CI9]. AH* = 19.6 kcal./mole 

for kjL and 13 kcal./mole for k_^. AS^ = -11 e.u. for k^ and 

-19 e.u. for k_^ 
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exchange, Fu+V, was measured since both trans-RPT(NHG)?C1q] 

and [Pt(NH3)2CI(H2O)]+ came through the ion exchange column. 

A typical exchange plot of ln(l-Fu+v) versus time is shown in 

Figure 4. Normally, these plots appeared linear over a period 

of at least twice the times of haIf-exchange. The rates of 

exchange were calculated from the observed times of half-

exchange using Equation III.27, which was derived under the 

assumption that the amount of [Pt(NHg) gClfHgO) ]"*" present was 

very small so that the exchange system was a "two component" 

system. This assumption is valid at all chloride concentra­

tions above 0.01 N. because the amount of mono-aquo compound 

present at equilibrium is negligible under these conditions. 

The conditions and the results of the exchange experiments at 

15°, 25° and 35° C. are tabulated in Table 3. 

Exchange of chloride with the two platinum species 

present must take place through the acid hydrolysis reactions. 

In addition to acid hydrolysis, exchange might also take place 

through some other pathway such as a direct chloride exchange 

which may or may not be chloride dependent. 

It was observed that the times of half-exchange 

initially increased with increasing chloride concentration, 

then reached a maximum at about 0.01 N. KC1 and then decreased 

as the chloride concentration increased further. This 

strongly suggested that a second process, such as direct 

chloride exchange, was competing with the hydrolysis reaction 
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Table 3. Exchange of the chloride ligands of trans-TPtfNHg)dCIqI 

Initial Initial Equilibrium Time of Rate of 
exchange Temp. [Pt(NH3)2C12] added [Cl~]a [Pt(NH3)2(H20)Cl+] half-
Rate of 

exchange (°c.)  il a il a 
A "b" M m il 

00 A 
(M. x 106) 

exchange R 
(M. x 104) (M.) 

M m il 
00 A 

(M. x 106) (min. ) (sec.-1 M.) 

M m il 
00 A 

(M. x 106) CO o
 

H
 

X 
15.0 5.95 0.001 100 390 1.6 

4.67 0.003 32 570 1.4 
4.98 0.040 2.7 560 2.0 
4.95 0.070 1.5 460 2.4 

25.0 7.59 0.001 179 126 5.4 
0.003 81 160 7.3 
0.010 27 190 8.0 
0.040 6.9 160 10.6 
0.070 4.0 150 11.3 
0.100 2.8 130 13.2 

3.80 0.001 95 170 2.9 
0.003 41 190 3.7 
0.040 3.4 190 4.5 
0.100 1.4 130 6. 6 

35.0 7.59 0.001 194 42 16.5 
0.020 15 61 27. 
0.040 7.7 56 30. 
0.070 4.6 49 35. 
0.100 3.1 43 41. 

3.80 0.001 106 56 8.9 
0.040 3.8 58 14.9 
0.100 1.5 43 20. 

aIonic strength was adjusted to p. = 0.318 by addition of Na2S04. 

bR calculated with assumption that R" = 0 and that x <« a. 
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in the total observed exchange. The quantity R/a (recall R 

is the total rate of exchange and a is the initial trans-

compound concentration), calculated from Equation III.27 for 

each of the experiments, was then plotted as a function of 

chloride ion concentration for 15°, 25° and 35° C. These 

graphs are shown in Figure 8. For all of the experiments with 

[Cl~] y 0.003 M. the points for each temperature fell closely 

along straight lines. The straight lines all had finite 

positive slopes. This, then was graphic evidence for the 

existence of direct exchange by a chloride dependent process. 

The straight lines extrapolated back to zero chloride con­

centration gave values of the ordinate which agreed quite 

closely with the values of k% determined by the potentiometric 

titration method. Thus, the values of k%, the first acid 

hydrolysis rate constant, and k* the direct exchange rate 

constant, were determined from the intercept and slope of the 

straight line function. The values of k^ and k' obtained from 

the exchange plots are given in Table 4 along with the values 

of ki obtained by titration procedures. The fact that k^, 

obtained from the exchange plot intercept, and k^, obtained 

by titration, agreed quite well wi/th each other indicated that 

(R" + R2) was not very large in the linear portion of the 

curve. The reasoning behind this conclusion was discussed in 

Chapter. Ill, page 47. ! 

So, for all chloride concentrations greater than 
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Figure 8. Plots of R/a versus chloride concentration at 
15°, 25° and 35° C. for the chloride exchange 
of trans-[Pt(NH3)2CI2]• Ionic strength = 0.318 
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Table 4. Comparison of first hydrolysis rate constants from 
exchange data and titration data and values of 
direct chloride exchange rate constant at 15°, 25° 
and 35° C. for trans-[Pt(NH3) 2C12] . (p. - 0.318) 

ki 
Temp. (xl05 sec.-1) 
(°C.) by exchange 

15.0 3.1 

25.0 9.8 

35.0 31i0 

(xlO5 sec."*1) 
by titration 

3.2 

8.9 

28.0  

k' 

(xlO4 M."1 sec."1) 

2.3 

7.8 

23.0 

0.003 M., the expression for the total rate of exchange was: 

R=Rl+R' = kift-Ptt^) 2Cl2]+k'[t-Pt(NH3) 2C12] [Cl~] (IV.2) 

Because of the smaller experimental error, it is pro­

posed that the values of k% obtained from the isotopic ex­

change data are more accurate than those, found by titration. 

The temperature dependence of k' is shown graphically in 

Figure 9. The enthalpy of activation for k', AH^", was 

calculated to be 19.6 kcal./mole and the entropy of activation, 

± 
AS , was -7 e.u. 

The trans-[Pt(NH3)2C12] complex and the [Pt(NH3)3C1]+ 

complex are the only members of the series of chloroammine 

platinum(II) complexes which have a measurable, second order, 

direct chloride exchange process in addition to the expected 

acid hydrolysis. The possible reasons for this are dis­

cussed in Chapter V. For the trans-[Pt(NH3)2C12] complex, 

the two processes, i,.e^., acid hydrolysis and direct exchange, 
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Figure 9. Temperature dependence of the direct chloride exchange rate 

constant, k', for tr ans - [ Pt (NHg)gClgl « AIT^ = 19.6 kcal./mole, 

AS^ = -7 e.u. 
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contribute about equally to the total exchange at [CI-] = 

0.1 M. 

At very low chloride concentrations ( ̂  0.003 M.) the 

points in Figure 8 deviate quite severely from the straight 

line function. This is due to the fact that the assumption 

that [Pt (NH3) 2C12] yy [Pt(NHg) 2C1(H2<)) ]+ is no longer valid 

at low chloride concentrations and therefore Equation III.27 

does not hold in this region. The amount of direct chloride 

exchange becomes negligible at low chloride concentrations, 

however, exchange with the [Pt(NH3)2C1(H20)]+ species must be 

taken into account. The mathematical treatment of the ex­

change kinetics of "three component" systems is discussed in 

Chapter III-C. The values of y, defined by 

y = R'/Ri = k'(a-x) (b+x)/k^(a-x) (IV.3) 

and used in the calculation of a time of haIf-exchange, were 

fixed by the known parameters a, b, (to obtain x), k^ and 

k' (obtained from high chloride exchange) . By adjusting (3 = 

(R" + R2)/Rl until the calculated time of half-exchange agreed 

to within 10% of the observed value, the best value of p ex­

plaining the observed exchange was found for 15°, 25° and 35° 

C. The times of half-exchange were also calculated assuming 

that 0-0, i.e., no exchange with the [Pt(NH3)2CI(H2O) ] + 

species takes place. The results of these calculations are 

given in Table 5. 

It is apparent that times of half-exchange calculated 
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Table 5. Chloride exchange experiments for trans-[Pt(NHg)2C12^ at low chloride 
concentrations (added KC1 = 0.001 M., M- = 0.318 M.) 

Initial Equilibrium Time of 
Temp. [Pt(™!!.2Cl21 [Pt(m,3)2=KH20)+] Half-exchange Calc_ for Indlcated 

"O. M. X 104 M x
T
1q4 obsd. (R"+R2)/Rx-0 (R"+R2)A>1 

15.0 5.95 1.00 6.5 6.7 .04 

25.0 3.80 .95 2.8 3.2 .1 

25.0 7.59 1.79 2.1 2.4 .1 

35.0 3.80 1.06 .93 1.03 .08 

35.0 7.59 1.94 .70 .77 .09 
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for (R" + R2)/Ri  = 0 did not differ greatly from the observed 

quantities. Therefore (R" + R2) was not large and was not 

indicated accurately by these experiments. It was impossible 

to separate the acid hydrolysis rate (R2) and the direct 

exchange rate (R") whereas these were easily separated for 

R = Rj_ + R* . From the value of (R" + R2)/R]_ which will 

account for the observed time of half-exchange, an upper 

limit of 0.5 k^ can be set for a first order rate constant 

k2. 
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V. DISCUSSION 

The rate constants for the reversible acid hydrolysis 

of trans-[Ft(NHg)oClol are shown in Table 2, Chapter IV. The 

value found for k^, the initial hydrolysis rate constant, was 

almost three times larger than the value which Banerjea et al. 

(25) reported for the isotopic chloride exchange rate con­

stant. However, the first order rate constants which they 

found for substitution reactions of the trans-salt with 

glycine, analine, pyridine and hydroxide were all approxi­

mately equal to the value of k% found in this work. It there­

fore appears likely that the first order dependence of these 

substitutions can be attributed to a rate-determining acid 

hydrolysis followed by a rapid replacement of HgO by the sub­

stituting group or neutralization in the case of OH-. Grin-

berg (33) has also proposed this process to account for 

hydroxide substitution rates evaluated in his laboratory. 

However, preliminary experiments in this laboratory have indi­

cated that a process which is first order in hydroxide occurs 

also. It appears possible in view of the measurable direct 

chloride exchange, that a process first order in hydroxide may 

also contribute to this reaction. 

As is shown in Table 2, the rate constant, k^, is sub­

stantially independent of ionic strength, whereas the rate 

constant for the reverse reaction, k_^, is strongly affected. 

Indeed, an ionic strength of 0.318 increases the equilibrium 
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quotient, K^, which is given by k^/k_^, to about four times 

Kj_, the equilibrium quotient at zero ionic strength. Since 

the reverse of acid hydrolysis involves a reaction between two 

ions whereas the acid hydrolysis reaction takes place between 

two neutral molecules, this ionic strength effect is not 

surprising. The Debye-Hucke1 Theory leads to the prediction 

that the rate of a reaction between ions of charge ZA and ZB 

should vary with the ionic strength, |j., of a solution as 

shown in the following equation (46, p. 102) : 

log k^ = log kQ + 2AZAZB >J]I (V.l) 

where k^ and kQ are the rate constants at ionic strengths 

\l and 0, and A is a constant which depends on the solvent. 

This ionic strength feature argues against a simple 

"dissociative" mechanism such as that suggested by Basolo and 

Pearson (26, pp. 188-189) which is discussed on page 10, 

Chapter I. It also supports the hypothesis that the transi­

tion state for the hydrolysis has zero charge. A possible 

mechanism, which is an adaptation of the mechanism discussed 

on page 9, Chapter I, is shown in Figure 10. 

In this mechanism the initial coordination figure is a 

distorted octahedral arrangement in which the complex with its 

four square planar ligands forms weaker bonds to solvent 

molecules along the normal to the plane. These solvent li­

gands are quite labile and can undergo substitution reactions 

by other potential ligands in solution such as ionic chloride 
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Figure 10. Mechanism for the acid hydrolysis and direct chloride exchange 
reactions for trans-fPt(NH-a) qCIq] . 
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with rapidly established equilibria. The transition state 

is formed when one of these axial H20 groups moves in, dis­

placing the chloride, to yield approximately a trigonal 

bipyramid arrangement. If the ligand trans to the group being 

replaced by H2O is capable of forming tr-bonds in which 

platinum donates the electrons, then the transition state is 

stabilized as was discussed on page 8, Chapter I. The 

availability of the five orbitals (5dx2_y2, 6s and 6px y 2) to 

form bonds also adds favor to this transition state. The 

transition state then collapses to the tetragonal configura­

tion with a HgO group in the square and a chloride in a 

labile axial position. This chloride is rapidly replaced by 

HgO, which is present in large excess, to form the products. 

This same mechanism also seems quite feasible to explain the 

direct chloride exchange process, also shown in Figure 10. 

The remainder of this chapter is devoted to comparisons 

of acid hydrolysis and chloride exchange reactions for the 

series of chloroammineplatinum(II) complexes. It may be in­

structive for consideration of reactions of the following type: 

H 20 
I 

L -Pt-tY ^  + L-Pi 

_r 

AF. 
o 
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where L = NH3 or CI and the groups in the square cis to the 

substated groups have been omitted for clarity, 

to consider the following free energy diagram: 

L - Pi - oHt 4 Cl 

L - Pi - Ci 

where AFJ = free energy of activation for acid hydrolysis 

Apt = free energy of activation for reverse acid 
— 1 

hydrolysis 

AF^ = standard free energy change for acid hydrolysis. 

The equilibrium quotients for acid hydrolysis and the 

rate constants for acid hydrolysis and direct chloride ex­

change for the entire series of the chloroammine complexes of 

platinum(II) are shown in Table 6. The values in parentheses 

are for zero ionic strength, all the others being for 0.318 

ionic strength. 

In order to make a rational comparison of the equilibrium 

quotients and rate constants for the first acid hydrolysis, 

each should be divided by a statistical factor n, the number 

of equivalent chloride ligands in the complex. A plot of log 

Kj/n versus the complex species in order of increasing charge 
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Table 6. Acid hydrolysis equilibrium constants, first aquation rate constants, 
and direct chloride exchange rate constants for the chloroammine-
platinum(II) complex series at 25.0° C.a 

[PtCl4]-b [Pt(NH3) Cl3]-C c-[Pt(NH3) 2Cl2]d t[Pt(NH3) 2C12] [Pt(NH3)3Cl]"'"e 

K1 1500 
(3000) 

c 
t 
- 1400 
-<200 

330 
(84) £ 

32 
(8.2) 

27 
(8.4) 

M. 

K[/n 375 
(750) 

c_ - 700 165 _ 
(42) £ 

16 
(4.1) 

27 
(8.4) 

M. 

K2 
50 

(100) 
4 40 <2 - . M. 

*1 3.9 c 
t 

3.6 
2.3 

3.3 9.8 2.6 sec.-1 

kj/n .98 £ 1.8 1.6 4.9 2.6 sec.™1 

kCl <3 < 3 ~3 78 7 M. ~1sec.~1 

All values listed have been multiplied by 105. Values listed in parentheses 
are for zero ionic strength, all others are for ionic strength 0.318. Values 
listed without additional values for zero ionic.strength are the same at both 
zero and 0.318 ionic strength. 

b(2,5). 

C (3,4) . 
d ( 6 ) .  
eAprile, F. and D. S. Martin, Ames,. Iowa. Acid hydrolysis and chloride exchange 

of [Pt(NH3)3C1]. Private communication. 1961. 

^Estimated values. 
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is shown in Figure 11. In this plot a line of negative slope 

has been drawn through points for cis-[Pt(NH3) 2C12-1 and 

[Pt(MH3) 3C1]+. The slope of this line can be explained by 

considering the coulombic interaction between the chloride and 

the complex. The acid hydrolysis involves separating a 

negative species, CI", from the complex and one would expect 

this process to become easier, giving a larger value of K-[/n, 

as the charge on the complex becomes more negative. For these 

two complexes the chloride replaced must be trans to an NH3. 

Another line drawn through the points for PtCl^" and 

trans_-[Pt (NHg) 2C12] j for which the replaced CI™ is trans to a 

CI", lies approximately parallel to the first line. Values of 

K^/n in this line are roughly a factor of 10 below the first 

line. This indicates that Af£ is less positive for 

NH3-Pt-Cl > NH3-Pt-OH2 than for Cl-Pt-Cl > Cl-Pt-OH2. 

If tt-bonding was contributing significantly to the stability 

of the Pt-Cl bond, then a CI™ trans to à Cl" is expected to 

destabilize the system since the two Tr-bonds must compete for 

the same platinum d orbital. Instead, the opposite effect is 

observed. Therefore, it appears likely that T-bonding is not 

significant in this system. 

The [Pt(NH3)Cl3]~ complex was purposely omitted from the 

above discussion as it requires special consideration. The 

acid hydrolysis reactions for this complex were studied by 

Elleman et al. (3, 4). Their assignment of the acid hydroly-
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Figure 11. Plot of log K,/n for the entire series of 
chloroammineplatinum(II) complexes comparing 
the acid hydrolysis equilibria 
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sis predominantly to the chloride cis to an ammonia ligand was 

made from tracer studies of substitution reactions which could 

possibly be subject to misinterpretation, especially if sig­

nificant amounts of both cis- and trans- FPt (NH-*) CI? (H?0) 1 were 

present. If this assignment were reversed to indicate 

hydrolysis of the trans-chloride, then the value of log K^/n 

measured for this complex would fit nicely with the curve for 

the replacement of trans-chloride. From Table 6 it can be 

seen that Kg, the second acid hydrolysis equilibrium quotient, 

is very low for the [Pt(NH3)CI3]- complex and out of line with 

the values found for PtCl^= and cis-[Pt(NH3)gClg]• If hy­

drolysis of the trans-chloride is assumed, then the second 

hydrolysis involves the reaction Cl-Pt-Gl —^ Cl-Pt-OHg. Thus, 

the low value of K2 would be in agreement with the previously 

discussed stability of Cl-Pt-Cl, compared to NHg-Pt-Cl. 

The effect of increasing ionic strength on the equili­

brium quotient for PtCl^= is to cause a significant decrease. 

The equilibrium quotient for [PtfNHgJClg]"" remains unchanged 

with increasing ionic strength and the value for [Pt(NHg)3C1]+ 

increases considerably. The equilibrium quotient for cis-

[Pt(NH3)gClg] was not measured at varying ionic strength. 

These observations are expected since, from Equation V.l, the 

product ZAZB will be positive, zero and negative for the re­

verse acid hydrolyses of PtCl4=, [Pt(NH3) Cl3]"", and 

[•Pt(NHg) 3C1.]+ respectively. Thus an increase in p. will in­

crease k_2 for PtCl^", cause no change in k_^ for 

[Pt (NH3) CI3 ] "" and decrease k_i for. [Pt (NH3) 301]+. Therefore, 
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since k^ is essentially independent of ionic strength for all 

of these complexes, the equilibrium quotients, given by 

= k1/k_1, are expected to vary inversely with k_1. 

The enthalpies and entropies of activation for the acid 

hydrolysis and direct chloride exchange reactions together 

with the standard free energy change of hydrolysis are given 

in Table 7. 

Table 7. Enthalpies, entropies and standard free energy 
change of acid hydrolysis for hydrolysis and direct 
chloride exchange reactions of the chloroammine-
platinum(II) complexes 

Complex Ki k 1 k_ 1 k' 

\l = 0.318 AF° 
kcal. 

AH* 
kcal. 

AS* 
eu. 

AH* 
kcal. 

AS* 
eu. 

AH* Asï 
kcal. eu. 

[ptci4]= 2.48 21 - 8 15 -18 — . — 

[Pt(NH3)Cl3]~ 2.52 19 -15 17 -14 — — 

ç-[Pt(NH3)2Cl2] 3.38 19.5 -14 17 -14 — — 

t-[Pt(NH3)2Cl2] 4.78 19.5 -11 13 -19 19.5 -7 

[Pt(NH3)3Cl]+ 4.86 18 -18 19 - 4 29 19 

The most striking feature in these quantities is the 
+ 

similarity in AH+ for k^, all of the values being within 2 

kcal. of 19 kcal./mole. This remarkable similarity in the 

hydrolysis rate constants despite the wide variation in the 

charge of the complex is also revealed in a plot of log k^/n 

which appears in Figure 12. Furthermore, it can be seen from 
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Figure 12. Plot of log k^/n for the entire series of 
chloroammineplatinum(II) complexes comparing 
the acid hydrolysis rates 
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Table 6 that k% for each complex remains unchanged despite 

large changes in the ionic strength of the solution. These 

observations could not be explained by a "dissociation" 

mechanism to yield a coordination number of three for the 

transition state, as such a process is expected to show 

large ionic strength effects and probably would exhibit widely 

different rate constants. These facts are consistent, however, 

with the mechanism shown in Figure 10 in which the trigonal 

bipyramid transition state is formed by a similar intra­

molecular rearrangement for each of the complexes with little 

dependence upon ionic charge. 

A wide variation in AS"^ for both k^ and k_^ is observed, 

as shown in Table 7. However, this is not too surprising 

since the 2 kcal. variation in AH"^" is equivalent to an 

entropy effect of + 6 e.u. The values of AH^ can scarcely 

be determined with greater accuracy. Therefore, it is rather 

difficult to speculate any significant trend in the values of 

AS"^. One would expect the largest change in AS"f* for k_^ from 

complex to complex since this reaction involves ionic species 

uniting to form a transition state with a different charge 

from the original complex. Except for the trans-FPt(NH?)oClo1 

complex, a trend is observed towards more negative values of 

$ 
AS%_^ as the complex charge becomes more negative. 

+ 
The values of AFjj for acid hydrolysis are relatively 

independent of the complex. The acid hydrolysis rate for 
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trans-[Pt(NH3)2c12Î is th® fastest, but only by a factor of 

four over the slowest rate. This reactivity possibly reflects 

the absence of a permanent dipole in the complex reactant. 

The effectiveness of the trans-effect in NHg substitution 

by CI for the preparation of cis-[Pt(NHg),Cl^ is surprising 

in view of the lability of both the cis- and trans-chlorides 

toward acid hydrolysis. A factor of only five in the rate 

constants might account for the high yield of cis-compound 

since any trans- [PtfNH-Q 7.CI2I formed would react much faster 

with NHg and be removed from the products. 

The values of log k_^ are plotted in Figure 13. This 

plot reveals two sets of points with larger values of k_^ 

as the complex charge becomes more positive. This general 

trend is consistent with the coulombic attraction of chloride 

to the complex. The set containing [PtCl^J= and trans-

[Pt(NH3)2cl2l lies above the set of points containing cis-

[Pt(NHg)2C12^ and [Pt(NHg)3C1]+. Again if the assignment of 

cis- and trans- chlorides for [Pt(NH3)CI3] were reversed, 

then the members of the top series would be characterized by 

having the HgO group trans to a chloride, whereas each complex 

in the lower sequence would have HgO trans to an NH3 ligand. 

Thus, Figure 13 indicates that AF"^" is lower if the H2O being 

replaced is trans to CI, in agreement with the classical 

trans-effect. 

The chloride dependent exchange reaction found for 
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Figure 13. Plot of log k_^ for the entire series of 
chloroairanineplatinum(II) complexes comparing 
the reverse hydrolysis rates 
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trans-[Pt (NHg) gClg] and [Pt(NH3) gCl]"1" is the only such 

measurable process found with any of the chloroammine com­

plexes of platinum(II). Examples of chloride competing with 

the solvent, which is present in large excess, for displacing 

a chloride are quite rare. Such a process has been found, 

however, in the exchange of Cl"" with the square planar 

[AUCI4]- (47). It appears likely that the replacement of 

chloride ligands by ionic chloride is enhanced as the ionic 

charge on the complex becomes more positive. This, again, is 

consistent with the coulombic attraction between chloride and 

the complex. The rate constant, k1, for trans-F Pt(NH^)2C12 ̂ 

must be at least 25 times that for cis-fPt(NH?)oClol which was 

too small to be measured in the presence of the acid hy­

drolysis. This indicates that AF'"^, the free energy of 

activation for direct chloride exchange, is less positive when 

the transition state involves three chlorides in the trigonal 

plane, i.e., 

û-PtZ 

Vl 

Indeed, the lability of the chloride in the trans-

[Pt(NHg)2C12] complex is quite exceptional. 
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VI. SUMMARY 

The equilibrium and kinetics of acid hydrolysis for 

trans-[Pt(NH3)gClg] were measured. The equilibrium quotient 

at high ionic strength, K^, for this reaction was determined 

to be 2.2, 3.2, and 4.4 x 10"4 moles/l. at 15°, 25° and 35° C. 

respectively. The equilibrium quotients at zero ionic 

strength were 0.82 and 1.1 x 10moles/1, at 25° and 35° C. 

respectively. The equilibrium was satisfactorily described 

by a single chloride hydrolysis. The extent of a second 

hydrolysis was so small that only an upper limit of 2 x 10 

moles/l. can be set for a second acid hydrolysis equilibrium 

constant, K2. The rate constant for the single acid hy­

drolysis, kj_, was found to be 3.2, 9.8 and 32 x 10~5 sec."1 

at 15°, 25° and 35° C.. respectively. This rate constant was 

independent of ionic strength and values of 19.6 kcal./mole 

and -11 e.u. were found for AH^ and AS"^ respectively. An 

upper limit of 0.5 k]_ was set for the second acid hydrolysis 

rate constant, k2. 

The rate law for exchange of CI" with trans-fPt(NHj)^Cl^l 

was found to be: 

R = k-JPttNHg) 2C12] + k' [Pt(NH3) 2C12] [Cl~] (VI. 1) 

The value of k^ found by exchange experiments agreed with that 

found by titration procedures. The second order direct 

exchange rate constant, k', was 7.8 x 10~4 M."1 sec."1 and 
± + 

AH%1 = 19.6 kcal./mole and AS%,= -7 e.u. 
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The behavior of trans-fPt(NH3)9CI91 with respect to acid 

hydrolysis and chloride exchange was contrasted with the be­

havior of the other chloroairanineplatinum(II) complexes. 
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